長期高原低氧環境下脂質代謝通路中AMPK信號作用機制的研究進展
DOI:
https://doi.org/10.53104/yxyjkkx.2025.01.02.001關鍵詞:
高原低氧;脂質代謝;AMPK 信號通路;代謝適應;脂肪酸氧化;線粒體功能;作用機制摘要
長期暴露于高原低氧環境會對機體能量代謝網路構成持續性生理挑戰。脂質代謝作為能量供給與代謝調節的核心通路,在低氧適應過程中呈現顯著動態調控特徵。現有研究已形成普遍共識,腺苷酸活化蛋白激酶(AMPK)作為細胞能量狀態感知與整體代謝調控的核心分子樞紐,在低氧誘導的脂質代謝重塑中發揮不可替代的關鍵作用。本文整合近年動物模型研究、組織水準觀測資料及細胞實驗證據,系統梳理慢性低氧條件下脂質合成通路受抑制、脂肪酸氧化過程增強的核心分子機制,同時重點歸納肝臟、脂肪組織與骨骼肌等關鍵器官在結構功能特徵與代謝表型上的差異性改變。綜合現有研究成果可見,AMPK 活化過程與脂質代謝相關酶表達水準、線粒體功能調控效應及自噬信號通路存在緊密內在關聯,這些因素共同構成低氧適應背景下的複雜代謝調控網路體系。本文基於上述研究進一步闡釋該代謝重塑現象的生理適應核心意義,對未來圍繞 AMPK 開展的機制研究方向與干預策略發展路徑進行前瞻性分析,為深入理解高原生理適應機制及相關代謝性疾病研究提供具有價值的理論參考。
參考文獻
Siques P, Brito J, Ordenes S, et al. Involvement of overweight and lipid metabolism in the development of pulmonary hypertension under conditions of chronic intermittent hypoxia[J]. Pulmonary Circulation, 2020, 10(1 Suppl): 42-49. DOI:10.1177/2045894020930626.
Song K, Zhang Y, Ga Q, et al. High-altitude chronic hypoxia ameliorates obesity-induced non-alcoholic fatty liver disease in mice by regulating mitochondrial and AMPK signaling[J]. Life Sciences, 2020, 252: 117633. DOI:10.1016/j.lfs.2020.117633.
Murray A J. Energy metabolism and the high-altitude environment[J]. Experimental Physiology, 2016, 101(1): 23-27. DOI:10.1113/EP085317.
O'Brien K A, Simonson T S, Murray A J. Metabolic adaptation to high altitude[J]. Current Opinion in Endocrine and Metabolic Research, 2020, 11: 33-41.
Murray A J. Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies[J]. Genome Medicine, 2009, 1(11): 117. DOI:10.1186/gm117.
Gangwar A, Paul S, Ahmad Y, et al. Intermittent hypoxia modulates redox homeostasis, lipid metabolism associated inflammatory processes and redox post-translational modifications: Benefits at high altitude[J]. Scientific Reports, 2020, 10(1): 7899. DOI:10.1038/s41598-020-64848-x.
Fang C, Pan J, Qu N, et al. The AMPK pathway in fatty liver disease[J]. Frontiers in Physiology, 2022, 13: 970292. DOI:10.3389/fphys.2022.970292.
Dong J, Li M, Peng R, et al. ACACA reduces lipid accumulation through dual regulation of lipid metabolism and mitochondrial function via AMPK-PPARα-CPT1A axis[J]. Journal of Translational Medicine, 2024, 22(1): 196. DOI:10.1186/s12967-024-04942-0.
García-Fuentes E, Santiago-Fernández C, Gutiérrez-Repiso C, et al. Hypoxia is associated with a lower expression of genes involved in lipogenesis in visceral adipose tissue[J]. Journal of Translational Medicine, 2015, 13: 373. DOI:10.1186/s12967-015-0732-5.
Luo M, Li T, Sang H. The role of hypoxia-inducible factor 1α in hepatic lipid metabolism[J]. Journal of Molecular Medicine, 2023, 101: 487–500. DOI:10.1007/s00109-023-02308-5.